
N88- 16413 i

Commonality Analysis as a Knowledge Acquisition Problem

Dorian P. Yeager

The University of Alabama

College of Engineering

Department of Computer Science

Tuscaloosa, Alabama 35487

Abstract. Commonality Analysis is a systematic attempt to reduce

costs in a large scale engineering project by discontinuing

development of certain components during the design phase. Each

discontinued component is replaced by another component which has

sufficient functionality to be considered an appropriate substi-

tute. The replacement strategy is driven by economic considera-

tions. The tool currently in use by NASA to guide the commonal-

ty analysis process, known as the System Commonality Analysis

Tool (SCAT), is based on an oversimplified model of the problem

and incorporates no knowledge acquisition component. In fact,

the process of arriving at a compromise between functionality and

economy is quite complex, with many opportunities for the

application of expert knowledge. Such knowledge is of two types:

(I) general knowledge expressable as heuristics and mathematical

laws potentially applicable to any set of components, and (2)

specific knowledge about the way in which elements of a given set

of components interrelate. Examples of both types of knowledge

are presented, and a framework is proposed for integrating the

knowledge into a more general and useable tool.

Introduction. Component part standardization has been used as a

means of increasing volume and reducing the cost of manufacturing

goods since the industrial revolution. The major cost saving was

due to mass production, which dramatically reduced the cost of

producing each unit. A side benefit was that items manufactured

in this way were cheaper and easier to repair, because

replacement parts were plentiful and reliable. Commonality is a

similar technique, applied at a higher level. Commonality

analysis attempts to standardize components on a system-wide

basis, or across multiple systems in a large engineering effort.

The components involved are more complex, serving multiple

functions. For example, Boeing Corporation has saved millions of

dollars in development, production, and maintenance costs, as

well as in pilot training, by employing identical cockpits in the

Boeing 757 and 767 aircraft. The earlier in a large engineering

effort that the principle of commonality is employed, the greater

the potential cost-saving benefits.

In a general sense, commonality analysis refers to an objective

evaluation of a large and complex project at a fairly early stage

in its design with the goal of finding opportunities to apply the

principle of commonality. Much of what can be called commonality

analysis is highly creative and has no fixed methodology. Howev-

291
PRECEDING PAGE BLANK NOT FIL_-D

er, there is one activity that appears to run through all such

analyses as a unifying thread: the direct comparison of two or

more competing designs, to ascertain the feasibility of eliminat-

ing some of those designs. Often the functionality of an item

can be extended in such a way that it may serve other purposes

while continuing to function in the original fashion as well. It

may also be possible to use multiple copies of one item in place

of another. In still other cases it may be possible to make a

simple substitution, eliminating an item whose functionality can

be completely assumed by another.

Current Software Solutions. Only one type of comparison lends

itself easily to automation via software, and that is the type of

comparison which strives to evaluate the advisability of

substituting one or more copies of one item for another, without

examining the possibility of redesigning or extending the

functionality of any items. In this case it is often sufficient

to simply evaluate a cost function. In the case of a two-way

comparison, say between item a and item b, the cost function must

be evaluated for three situations: that in which a and b are

uniquely implemented, that in which a substitutes for b, and that

in which b substitutes for a. The three numbers are compared,

and the lower cost wins. This simple strategy is the basis for a

software tool currently in use by NASA, called the System

Commonality Analysis Tool, or SCAT (See [I]). SCAT evaluates a

set of n objects by computing n+l costs: the so-called "unique

option", plus the n possible substitution strategies.

Of course, cost functions must be given sufficient data on each

item in order to give realistic predictions of comparative costs.

The gathering and management of that data is another need which

indicates a software solution. The SCAT program incorporates

data management facilities. In fact, SCAT is written as a front

end to a commercial database management system (DBMS). SCAT

obtains the data it needs for its cost analyses from files
created with the DBMS functions.

SCAT operates as follows. Design data on hardware and/or soft-

ware components are captured as records in commonality databases.

Each such database is created and maintained by a database

administrator familiar with the project. A separate record is

made for each item which may be a candidate for comparative cost

analysis. The attributes of a record must always include those

required by the SCAT cost function. To insure this, the databas_

administrator is constrained to create the database via the SCAT

front end, which automatically supplies the needed attributes

with each new database. However, there is no requirement that

all items entered into a database have identical, or even very

similar, functional characteristics. Nor is there any capability
within SCAT to search for sets of items with related functional

characteristics. For its comparative cost analyses, SCAT relies

on the database administrator to communicate to it precisely the
subset of n items which it is to evaluate. This is done with

standard database subsetting operations, communicated via a

292

series of menus which painstakingly prompt for the necessary
information to construct a relational expression to be used as a

query. For those with more relational database experience,

direct access to the DBMS proper is provided.

Once the subset database is identified which is to be subjected

to analysis, the SCAT user may request a cost analysis on that
subset. SCAT then assumes that the items in the subset have

identical functionality, and provides the requested n+l cost

figures, sorted in increasing order. The final assumption is
that the most "cost effective" alternative will be a viable

alternative.

A More General Formulation. Let _ be the relation, defined on

the set of all records in a given commonality database, as a_b if

and only if a is a feasible substitute for b. We call _ the

feasibility relation on that set of records. The properties of

the relation _ depend entirely on the characteristics of the

given database. _ may or may not be symmetric, antisymmetric, or

transitive. As a convention, we take a_a to be true for all

items a in the database (that is, _ is always reflexive). By

rights, it is the connected components of the relation _ that

ought to be subjected to analysis. In other words, if a record x

is in a given subset being subjected to analysis, we would wish

that all records y be also in the subset, where there is a series

of records xl, x2, ..., x,, for which x_ = x, x_ = y, and for

each i = I, 2, ..., m-l, either xi_xi+1 or xi+1_xi .

Let us assume that we have isolated one of these subsets, say A,

and that it is in fact a connected component of _. The form of

the relation on set A may be arbitrarily complex. Let us consider

the simple case of a two-element set, the two elements a and b we

referred to in our discussion of SCAT, above. If both a_b and

b_a are true, then all three SCAT options make sense, and we

choose the least costly. If only one of them is true, for exam-

ple if a_b and not b_a, then we may or may not choose to replace

b by a, even though _ permits us to do so. It may be more

cost-effective to produce the two items separately. However, if

we run a SCAT analysis on the set, the recommendation may be to

substitute b for a, even though that is not a viable alternative.

SCAT's recommendations must be filtered through a human expert,

who knows which solutions make sense and which do not. Now let

us add a third element, c, to the set. An interesting fact here

is that the most economical alternative may be to substitute a

for c and produce b uniquely. This may be true because of the

form of the relation _. For example, it may be that the only two

non-reflexive relationships are a_c and b_c. However, depending

on which cost function one uses, such a twofold strategy may be

called for even if _ freely allows substitutions of all kinds in

the set {a,b,c}.

The most general substitution strategy is represented by a pair

(w,T), where 7 is a partition of the set A and T is a set of

representatives of 7. In the example above, the partition is 7 =

293

{{a,c},{b}} and the set of representatives is T = {a,b}. If _ =

{KI, K2 K, }, and T = {tl, t2, ..., t, }, then it must be

true that for each i = I, 2, ..., m, tiax for all x in Ki. For

this reason we call (_,T) an a-partition.

A SCAT-type solution can now be seen as a special case of this

general form. It is the case where the partition _ and the set T

have only one element each. That is, _ = {A} and T = {t} for

some element t of A.

The Need for a New Methodology. Clearly, techniques for

generating the more general form of solution described above will

be much more complex than the simple SCAT strategy. An initial

collection of knowledge about s-partitions and cost functions on

s-partitions is available in the form of a series of propositions

contained in a paper [2] submitted by the author to the journal,

Operations Research. Several of these propositions suggest

algorithms which may be applied to provide a sub-optimal

solution, which may then be refined by heuristic techniques.

Because of the very general nature of the problem, there probably

is no deterministic algorithm which will yield an optimal

solution in every case, and each case must be examined in light

of its own properties. An eclectic solution strategy is called

for. Logic programming is the obvious tool for investigating

such solution strategies because of the natural way in which

propositional knowledge may be encoded.

Capturing the Feasibility Relation. The perfecting of a

generalized solution strategy for commonality analysis is an

intriguing problem, but there is a companion problem which is

just as intriguing. To be able to say that widget a is a

feasible substitute for widget b clearly requires expert

knowledge about widgets. To search through a database of

hundreds of widget designs and produce a set of twelve which are

closely related to the extent that a SCAT-type analysis may be

performed on that set also requires a certain level of expertise.

Is there any hope that this process may yield to a software

solution? If so, then a knowledge base component is necessary.

It is possible to capture the knowledge about a and store it as

an integral part of the commonality database itself. Clearly,

there must be a close physical association between the data and

the knowledge whereby the relation a on that data may be

constructed. We propose, then, that every commonality database

be accompanied by a companion knowledge base. The construction

and maintenance of the knowledge base would be the responsibility

of the database administrator.

Let us examine how the knowledge might be encoded. In the SCAT

environment, the user is encouraged to find a set of items for

analysis by sorting on various attributes and scanning the sorted

list for potentially common sets of items. When such a group

appears, the user may communicate to SCAT the set he or she is

interested in by means of a relational expression which

294

identifies the desired set. If the decisions concerning how to
sort and group the data are made in advance, the entire process

of selecting a subset for analysis can be carried out in a single

automated operation.

But let us not confine ourselves to SCAT-type methodology. What

we are trying to do is to capture the feasibility relation _.

Any information about a will be useful, even if it consists only

of a single pair (a,b) of records. The forms taken by the

knowledge will be varied. The following list covers some of

those forms.

Type of
Information

pair

sort

group

relational expressions

Parameters

Needed

<record key> I, <record key>_2

<attribute>,<direction>

<attribute>,<range of values>

<attribute>,<relation>

<attribute>,<tolerance>

No specific form for

parameters. May use a

specially designed prefix or

postfix coding scheme.

Conclusions. The Commonality Analysis problem requires expert

knowledge at all phases of the solution process. The creation of

databases, the maintenance of data and knowledge about the data,

the selection of commonality alternatives, and the application of

solution strategies may all profit from software solutions that

incorporate knowledge. The report [3] referenced below presents

an overall strategy for the incorporation of knowledge.

Acknowledgements. The author expresses his gratitude to NASA and

the NASA/ASEE Summer Faculty Fellowship program, which sponsored

his initial research into this topic. Special thanks go to Dale

Thomas for his enthusiasm, encouragement, and ideas.

References.

. MSFC. Commonality Analysis Study, User Manual for the System

Commonality Analysis Tool (SCAT), D483-I0064, March 1987.

Contract NAS8-36413, NASA George C. Marshall Space Flight

Center, Alabama.

° Yeager, D. P. A Formulation of the Commonality Analysis

Problem and Some Partial Solutions, submitted to Operations

Research, 1987.

, Yeager, D. P. Expert System Development for Commonality

Analysis in Space Programs, in final report of the 1987

NASA/ASEE Summer Faculty Fellowship Program, NASA George C.

Marshall Space Flight Center, pp. XXXV-i through XXXV-25.

295

